Homoclinic Loops, Heteroclinic Cycles, and Rank One Dynamics

نویسندگان

  • Anushaya Mohapatra
  • William Ott
چکیده

We prove that genuine nonuniformly hyperbolic dynamics emerge when flows in RN with homoclinic loops or heteroclinic cycles are subjected to certain time-periodic forcing. In particular, we establish the emergence of strange attractors and SRB measures with strong statistical properties (central limit theorem, exponential decay of correlations, et cetera). We identify and study the mechanism responsible for the nonuniform hyperbolicity: saddle point shear. Our results apply to concrete systems of interest in the biological and physical sciences, such as MayLeonard models of Lotka-Volterra dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics near the Product of Planar Heteroclinic Attractors

Motivated by problems in equivariant dynamics and connection selection in heteroclinic networks, Ashwin and Field investigated the product of planar dynamics where one at least of the factors was a planar homoclinic attractor. However, they were only able to obtain partial results in the case of a product of two planar homoclinic attractors. We give general results for the product of planar hom...

متن کامل

Symmetric homoclinic tangles in reversible systems

We study the dynamics near transverse intersections of stable and unstable manifolds of sheets of symmetric periodic orbits in reversible systems. We prove that the dynamics near such homoclinic and heteroclinic intersections is not C1 structurally stable. This is in marked contrast to the dynamics near transverse intersections in both general and conservative systems, which can be C1 structura...

متن کامل

Homoclinic Bifurcations that Give Rise to Heterodimensional Cycles near A Saddle-Focus Equilibrium

We show that heterodimensional cycles can be born at the bifurcations of a pair of homoclinic loops to a saddle-focus equilibrium for flows in dimension 4 and higher. In addition to the classical heterodimensional connection between two periodic orbits, we found, in intermediate steps, two new types of heterodimensional connections: one is a heteroclinic between a homoclinic loop and a periodic...

متن کامل

Exponential Dichotomies and Homoclinic Orbits from Heteroclinic Cycles

In this paper, we investigate the homoclinic bifurcations from a heteroclinic cycle by using exponential dichotomies. We give a Melnikov—type condition assuring the existence of homoclinic orbits form heteroclinic cycle. We improve some important results.

متن کامل

Homoclinic and Heteroclinic Bifurcations in Vector Fields

An overview of homoclinic and heteroclinic bifurcation theory for autonomous vector fields is given. Specifically, homoclinic and heteroclinic bifurcations of codimension one and two in generic, equivariant, reversible, and conservative systems are reviewed, and results pertaining to the existence of multi-round homoclinic and periodic orbits and of complicated dynamics such as suspended horses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2015